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Summary 

The objective of the paper is to develop and analyze a numerical procedure, based on a Lagran- 
gian particle model, for heavy gas dispersion. The paper discusses the numerical solution of the 
advection diffusion equation, with particular application to atmospheric dispersion of heavy gases. 
The discretization requirements to control numerical errors are examined for typical applications. 
The model is demonstrated to alleviate numerical diffusion errors which result from application 
of low-order finite difference methods, while allowing affordable discretization for heavy gas dis- 
persion predictions of practical interest. 

Introduction 

The use of transport phenomena models for heavy gas dispersion simulation 
entails several difficulties. They can be divided in two categories: (1) those 
related to the adequate description of the relevant turbulent transport pro- 
cesses; and ( 2 ) numerical complications. 

This paper deals with the second category. It uses a Lagrangian particle 
method to solve the convection diffusion equations governing atmospheric dis- 
persion of heavy gases. This means that the proposed algorithm uses discrete 
fluid particles to represent the contaminant with a continuous representation 
of the atmospheric flow. The physical model used is described in detail else- 
where [ 11. Among the numerical problems numerical diffusion is one of the 
major ones. Its consequences are discussed. A suitable Langrangian technique 
is then developed and is subsequently investigated by applying it to realistic 
dispersion scenarios. 

*Present address: Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 
72701. U.S.A. 
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Physical model 

The physical model belongs to the generic category of primitive equation 
models, since it attempts to solve the dynamical equations for the wind field 
and the temperature and contaminant field. It describes the transient disper- 
sion of an accidentally released contaminant in the near field, and takes into 
account the primary heavy gas effects. The model also makes it possible to 
incorporate the effect of obstacles in the ambient flow field. A detailed discus- 
sion is given in Ref. [ 11. 

Under the assumptions of turbulent and incompressible flow, Boussinesq 
approximation and gradient transfer hypothesis, the basic set of equations may 
be written as: 

&a) 

0-b) 

0.c) 

g+&FT=F.(qpFT) (1.d) 

In order to solve the above equations, the turbulent exchange coefficients 
fim, iiM, and @ must be determined at each point by means of a turbulence 
model. 

The present simulation specifies the vertical turbulent viscosities v~,* by 
means of a one-equation “turbulent kinetic energy”-type closure model with 
an ad hoc prescription for the length scale, i.e. the Nee-Kovasznay model [ 2 1. 
An additional term has been added to include buoyancy effects. 

The vertical mass transfer coefficients are determined from the ratio of the 
turbulent viscosities and the turbulent Schmidt number 

Z71M.r = %n.z lsct (2) 

The turbulent Schmidt number is modeled as a function of the local gradient 
Richardson number based on the local density gradient and the shear of the 
horizontal wind speed: 

Sc,=f,(Ri) 

where 

(3) 



The functional relationship is derived from an analysis of stratified flow 
experiments. The model does not assume the Reynolds analogy between mo- 
mentum and concentration or temperature transfer. The effective horizontal 
turbulent mass transfer coefficient is specified as a function of the horizontal 
wind direction variance, initial source size and time, following the statistical 
diffusion theory by Smith and Hay [ 3 ] : qMy =fi ( So, d2,t) 

A Gaussian distribution is assumed for the particle distribution. This is in 
principle only valid for homogeneous and isotropic turbulence. For height-de- 
pendent diffusivities the distribution is only applied locally. This approach is 
extended here from a linear to a nonlinear dependency, lacking further refine- 
ment in the underlying physical turbulence model. 

The model will now be used as a vehicle for the discussion of the numerical 
requirements for heavy gas dispersion simulations. Of course, most of the dis- 
cussion below will remain relevant beyond the specifics of this particular model. 

Motivation for a particle model 

In convection-turbulent diffusion problems, the objective is to predict the 
distribution of a scalar quantity in a fluid flow. The scalar quantity is simul- 
taneously convected with the mean flow and diffused by the turbulence. In the 
case of a heavy gas release into the atmosphere, the flow may be affected or 
even dominated by the presence of the contaminant. Most distributed param- 
eter models of such transfer processes have used finite-difference methods for 
approximating the model (partial differential) equations [ 4,5 1, and the cen- 
tral difference ( CD ) approximation is commonly used for the diffusion terms. 
However, when the CD approximation is used for the convection terms, nu- 
merical instabilities may occur when the convective flux dominates the diffu- 
sive flux [ 6-81. The relative importance of convection and diffusion is indicated 
by the grid Peclet number: 

u- A x. 
Pei =I 

Vi 
(4) 

where vi is the diffussivity in the i-direction. 
Unrealistic results are obtained with CD methods when Pei is greater than 

2 [ 41. Introduction of an artificial diffusivity limits Pe and stabilizes the cal- 
culation. Alternative “upwind” or donor cell difference schemes for the con- 
vection terms, although stable, introduce false (numerical) diffusion for high 
Peclet numbers. It can be demonstrated [6] that the upwind scheme results 
in a false diffusivity of 

(5) 
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which is the same value used to stabilize central difference schemes. The as- 
sociated “false” diffusion can be the principal source of numerical errors. The 
problem may not be too serious when streamlines are aligned with the grid 
lines in a steady state calculation since in this case diffusion occurs only in the 
direction of the velocity vector and may have little effect if convection is the 
dominant physical process. However, in more complex flow fields, the stream- 
lines may not be aligned with the numerical grid lines. If there is a significant 
gradient of the transported quantity in the direction normal to the velocity 
vector, the associated numerical diffusion error may even obscure the physical 
diffusion being modeled. This can be demonstrated by simulating the pure 
advection of a scalar step in a uniform velocity field which is diagonal to the 
numerical mesh [ 6-9 ] . 

The simulation of the turbulent flows resulting from accidental release of 
heavy gases in the atmospheric boundary layer is particularly demanding. First, 
the flow field is usually multidimensional, as in the gravity spread which im- 
mediately follows release or in the recirculating flows around obstacles. Sec- 
ond, vertical mixing may be severely damped and require the use of very low 
physical diffusivities. In contrast to the usual passive pollutant dispersion 
problems, accidental releases often occur at ground level, where diffusivities 
are also low. To estimate the magnitude of the problem, two typical scenarios 
are investigated: 
1. Continuous release of a heavy gas from a boiling liquid pool; 
2. Instantaneous release of heavy gas as in the Thorney Island series of field 

experiment [lo]. 

Continuous releases 

We assume a vertical exit velocity of 0.1 m/s at the pool surface (character- 
istic of a boiling cryogenic liquid). The ambient wind profile is neutral with a 
friction velocity of 0.13 m/s. The turbulence model is described by Schreurs 
and Mewis [ 11. Figure 1 shows the vertical diffusivity versus gradient Rich- 
ardson number for two heights ( respectively 1 m and 10 m above ground level). 
In Fig. 1 we have also plotted the false vertical diffusivities [ 41 required to 
stabilize the central difference scheme for three vertical spatial resolutions 
(AZ = 1 m, 0.5 m, 0.1 m) . The numerical solution is distorted when the stabi- 
lizing diffusivities are comparable with or greater than the physical values. 
Figure 1 shows that numerical diffusion is more severe close to ground level. 
With a vertical spatial resolution of 1 m, the false diffusivity near the ground 
is of the same order of magnitude as the physical diffusivity even without heavy 
gas stratification effects, It is obviously impractical to use the model to esti- 
mate turbulent diffusion with the low diffusivities which characterize disper- 
sion in density-stratified flows. 
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Fig. 1. Comparison between the physical ditYusivity and the numerical diffuaivity for spatial res- 
olutions of 0.1,0.5 and 1 m (vertical) : a - 10 m above ground level; b - 1 m above ground level. 

Instantaneous releases 

The complex flow patterns which occur during the gravity spread of a col- 
lapsing heavy gas cloud introduce further difficulties. We consider an instan- 
taneous release of 2000 m3 gas with density twice that of air. From the Thorney 
Island field experiments [ lo], we know that the physical diffusion time needed 
to dilute the cloud maximum concentration to 1% by volume is of order of one 
minute. A measure of the importance of false diffusion is obtained by deter- 
mining the false diffusivities from eqn. ( 5) along the three coordinate direc- 
tions for the conditions immediately following release (the worst conditions 
for numerical diffusion). Substitution of these ( maximum) false diffusivities 
in the analytical solution of the diffusion equation [ I1 ] gives a time scale 
needed for the false diffusivities to dilute the cloud maximum concentration 
to 1~01%. If this numerical time scale is comparable to the physical time scale, 
a good numerical solution cannot be produced. Table 1 summarizes the anal- 
ysis and indicates that numerical diffusion is a serious concern. Table 1 also 
indicates that overcoming the problem by using very fine computational grids 
becomes impractical for 3-D problems. 

The following remedies for the illustrated problems are being studied: 
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TABLE 1 

Analysis of false diffusion for a Thomey Island-type release 

Release characteristics - irWantaneous heavy gae spilk volume = 2006 m3, width= 12 m, length = 12 
m,heigth=14m,andpg=2p,. 

Spatial resolution Number of cells x lo3 Time 
scale 

Ax(m) Mm) Mm) NS NF T, (s) 

3 3 3.5 16 22 12 
3 3 2 28 32 14 
2 2 2 63 71 19 
2 2 1 126 130 23 
2 2 0.5 252 249 29 
1 1 0.5 1008 970 47 

N,: number of cells required to represent the source under a quarter-symmetry option; Nr: number 
of cells required to represent a cakuiation domain of 150 m X 156 m X 20 m (in quarter-symme- 
try) ; T,: time in seconds to dilute the cloud to 1% with false diffusivities 
Notxx Table 1 assumes no ambient wind conditions. The time scale T, would, however, not sig- 
niticantly change over an ambient wind speed range of O-6 m/s because the initial cloud motion 
remains the overriding effect. 

Reduction of the physical eddy diffusivity to account for the false diffusion 
inherent in the scheme [ 121. This approach is not viable in our application 
because of the low physical diffusivities involved. 
Second-order difference schemes for scalar advection (such as Crowley’s 
method), followed by filtering of numerical oscillation [ 131 or “anti-diffu- 
sive” corrections [ 141. 
Higher-order spatial discretization methods [ 41. These methods have not 
yet found widespread application in practice because of their relative com- 
plexity, and they have not been tested for application to the present problem. 
Functional methods (finite element, spectral models [ 9,15,16] ) . 
Lagrangian particle methods. This technique has been extensively used in 
other applications [ 171 including air pollution modeling [ 18,191. 

Conceptual basis for a particle model 

In Langrangian particle models, the dispersion is simulated with pseudo- 
particles (representing the contaminant gas) which can be advected and dif- 
fused by the flow field. The prescriptions for particle displacement must be 
consistent with the governing transport equation. The influence of the con- 
taminant on the flow is accounted for by integrating the influence of individual 
particles over the Eulerian mesh cells. The Eulerian computational cells are 
used to convert particle positions to concentrations at times and places of in- 
terest. The false diffusion problem is effectively eliminated. The effect of too 
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large Eulerian cell size relative to the cloud dimension (i.e. near the source) is 
to reduce information about the spatial position of the particle. This effect does 
not affect the accuracy with which the cloud development is predicted unless 
strong gradients are induced by a complex flow pattern. Although we can an- 
ticipate improved numerical performance ( in this regard) for particle models, 
systematic computational experiments are necessary to examine the following 
aspects of the approach: 
- consistency of the solution procedure with the governing physical model, 
- sensitivity of concentration predictions to particle number and spatial 

resolution. 
Consider the component mass balance ( advection-diffusion) equation: 

We incorporate the turbulence closure method suggested for accidental re- 
leases of heavy gases by Schreurs and Mewis [ 11. 

Rewriting the diffusion equation in the following form: 

d”+L K ,._!%dc c 

at axi c c axi >I =s 

we consider a convection process with velocity 

u!=u, hci ac -- 
I ‘- c axi (7) 

This approach has been suggested by Sklarew [ 201 to simulate air pollution. 
Particles are placed in the fluid region with the number of particles in a cell 
proportional to the concentration. When these particles are advected with the 
velocity u:, the resulting particle distribution approximates the solution of the 
diffusion equation, eqn. (6). The second term in eqn. (7) represents the av- 
erage speed with which particles diffuse relative to the main flow. The com- 
puted diffusion depends on computed values of concentration gradients and 
therefore requires sufficient cells to give proper resolution of the concentration 
gradients. Consequently, the technique is only a partial improvement over con- 
ventional Eulerian grid schemes. A particle treatment that would not require 
such fine resolution is desirable. 

An alternative procedure to simulate the diffusion process has been pro- 
posed by Hotchkiss and Hirt [ 211 and Sicilian and Hirt [ 221. The technique 
has been applied for hydrogen mixing in reactor containment buildings [ 23 1. 
The turbulent diffusion is modeled as a stochastic process, using a randomized 
velocity uri 

U~=Ui+U~i (8) 



to describe the motion relative to the flow field resulting from turbulent dif- 
fusion. A prescription for the probability distribution of yi is required. By 
calculating the history for a large number of particles, the ensemble solution 
is approached. This method appears less sensitive to spatial resolution than 
Eulerian models or Sklarew’s method. The influence of the grid size is due to 
the required interpolation of the flow properties at the grid nodes in order to 
determine the local properties at the particle positions. Provided an adequate 
interpolation scheme can be found, the stochastic approach may alleviate the 
numerical diffusion errors caused by a coarse grid. The remaining problems 
are the specification of the equations for particle motion and the number of 
particles required for a simulation. 

Extension of particle transport to nonhomogeneous conditions 

In the model recommended by Hotchkiss and Hirt [ 211, the turbulent dif- 
fusion is accounted for by assigning to each particle at each time step a random 
displacement of Gaussian probability with standard deviation 

bi = J2 ?jM,i dt (9) 

The method was originally restricted to applications where the eddy diffusivity 
was constant [ 211. It can be shown that this description (eqn. 9) is consistent 
with macroscopic gas cloud dispersion in the limiting case of a uniform spatial 
field and constant eddy diffusivity. In the application of interest here, the eddy 
diffusivities vary strongly in time and space due to the presence of the ground, 
obstacles and the (transient) heavy gas effect [ 11. In earlier work [ 24,251, 
successful application of the method was reported for pollutant sources above 
ground level. When near-ground sources were tested or whenever the range of 
application was extended to the near-ground region, the results were not sat- 
isfactory [ 24,251. This can be attributed to particle drift towards areas of lower 
diffusivity when eqn. (9) is applied. In the atmospheric surface layer, this 
leads to unrealistic concentration build-up at ground level. Several authors 
[ 26-281 have attempted to overcome this deficiency by adding an asymmetry 
term ( skewness term 1 to the displacement scheme for nonhomogeneous con- 
ditions. From the theory of continuous stochastic processes, Durbin [ 291 pre- 
sents the following particle displacement equation for application under 
nonhomogeneous conditions: 

~=a~M(z) 

a2 
dt+,/2 ?jM(z) dw, (10) 

where the increment dw, has a Gaussian distribution: 



with standard deviation ,/&_ Equation (10 ) is identical to eqn. ( 9 ) in homo- 
geneous conditions where the bias term ( arl, (z) /&) dt vanishes. Under non- 
homogeneous conditions, eqn. (10) indicates that particles will be subject to a 
Lagrangian mean vertical velocity: 

(11) 

This result can also be deduced analytically from the turbulent diffusion equa- 
tion in the limiting case of an instantaneous plane source of passive material 
released at ground level in the neutral surface layer. When the Monin-Obukhov 
relationship for the vertical eddydiffusivity is adopted (i.e. T]M (z) = ku, z) , 
the following analytic solution is obtained in this hypothetical case [ 111 

If mean cloud height is defined as 
OD 

s 
zcdz 

0 z=- 

J 
cd2 

0 

(12) 

(13) 

substitution of eqn. (12 ) into eqn. (13 ) yields: 

dVM $;= k u, zdz (14) 

which is consistent with eqn. (11) and eqn. (10). Equation (11) means that 
the Lagrangian mean velocity of a cloud of particles is non-zero under non- 
homogeneous conditions, even though the Eulerian mean vertical velocity may 
be zero. For a cloud of particles released at the surface ( z = 0 ) , some will even- 
tually rise above the surface, so that the mean height of all particles is increasing. 

Numerical procedures for particle models 

In order to advect and diffuse the pseudo-particles, the local mean and tur- 
bulent flow properties have to be known at the particle positions. This requires 
interpolation using values at surrounding grid nodes. Two basic procedures 
have been commonly applied: bivariate linear interpolation [ 4,301 and second- 
order interpolation [ 311. The latter has been shown to result in increased 
accuracy near extrema and in perturbed flow fields. However, Chan’s formula 
[ 311 cannot be applied close to solid boundaries, e.g. whenever a particle is at 
a height below half the vertical step size. In this case (z,, < 0.5 AZ), the particle 
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motion is handled by profile functions which in this case are consistent with 
known similarity close to the ground and match the flow properties at the first 
vertical node point. If the particle rises above 0.5 AZ during subsequent cycles, 
it is handed over again to the interpolation scheme. 

Additional limitations must be observed in defining the time step for the 
particle transport scheme. We have imposed the requirement that material 
must not be permitted to advect and diffuse across more than one computa- 
tional cell in a single time step. Such constraints are equivalent to the stability 
requirements for the explicit Eulerian flow field model. 

In order to simulate the turbulent diffusion properly, it is essential that the 
random number generating technique is adequate. Uniform random numbers 
are commonly generated by a multiplicative congruential generator [ 321. To 
generate random numbers of a particular non-uniform distribution, the hit-or- 
miss method can be applied [ 331. For the specific case of a Gaussian distri- 
bution, the following standard transformation method allows derivation of 
normally distributed numbers R G from uniform random numbers Ru 
(O<R~<l). 

R,,,=~~cos (2aRu.x) 

Ro,x =Jw sin (2nRu,x) 

We have checked the above procedures by generating sequences of random 
numbers and comparing the result against the expected distribution by means 
of a X2-statistical test. 

Numerical filtering can be applied to reduce the “graininess” of the pre- 
dicted concentration distribution which results from the use of a discrete num- 
ber of particles. A transition of a particle from one Eulerian cell to another 
leads to a jump change in concentration, causing statistical fluctuations in the 
concentration prediction. Numerical filtering is applied to smooth these fluc- 
tuations. The length and time scales imposed by the flow field discretization 
constitute a lower limit of (implicit) numerical filtering. The upper limit on 
filter size depends on the desired relevant scale range of the specific problem. 
The several filtering procedures that can be applied have been summarized by 
McRae et al. [ 15 1. We have used a first-order Kalman time filter: 

bdCF+c -c 
dt F-o 

where c,, represents the unfiltered concentration and cr the filtered value. The 
filter size is characterized by k, which is the reciprocal of a time constant z. 
The default size of the filter kn is taken as twice the node spacing: 

izD 
2Ax =- 

U 
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Fig. 2. Effect of skewness term on mean particle height: . - eqn. (9) ; CI - eqn. (10) ; -- - similarity 
prediction. 

In simulations of accidental releases, this corresponds to a time scale of the 
order of seconds_ 

Computational evaluation 

Several numerical experiments have been conducted to evaluate the particle 
diffusion model. In the first test, an instantaneous, passive source in a neutral 
surface layer (u, =0.X m/s) is simulated for comparison with the known an- 
alytic solution [ 111. Figure 2 shows the computed evolution of the average 
particle height. The result based on similarity theory [ 111 is reproduced cor- 
rectly. The figure also shows the importance of the skewness term for this 
simulation. 

In the second test, a passive instantaneous source in a uniform flow is mod- 
eled. The initial concentration distribution is uniform with height. In a correct 
dispersion model, the homogeneous concentration distribution should be pre- 
served. In this case, one hundred particles were introduced in each of thirty 
vertical cells. The vertical ambient diffusivity profile is chosen to represent an 
unstable surface layer (characteristics u *=0.277m/s,L=-50m,z0=0.02m). 
Using eqn. (9)) i.e. ignoring the bias term, results in rapid accumulation of 
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Fig. 3. Calculation of vertical particle distribution after 20 s for a height-independent source: a - 
without skewness term; b - with skewness term. 

particles near the ground. Figure 3a shows the corresponding profile after 20 
s. The assumption of a uniform homogeneous turbulence field is obviously 
unsuitable for accidental releases with stratification effect and the presence of 
the ground. On the other hand, the result of eqn. (10) does not exhibit such 
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Fig. 4. Evolution of mean particle height for a height-independent source: o - without skewness 
term; l - with skewness term. 

erroneous behavior. The vertical particle distribution remains uniform as ex- 
pected (Fig. 3b). The observed scatter is due to the finite number of particles. 
For the same conditions, the evolution of the mean particle height can also be 
computed (Fig. 4). We again observe that the result obtained without the 
skewness term is not acceptable. 

Discretization requirements 

A method is needed for estimating the required number of particles for a 
simulation. Therefore calculations were performed with varying particle num- 
bers for a given scenario. An example of such an analysis is shown in Fig. 5, 
representing predictions with increasing number of particles. The latter are 
based on a passive release of 153.2 kg/s during 2 s in a neutral surface layer 
( u, = 0.42 m/s, z, = 0.02 m) . The results show agreement at higher concentra- 
tion levels with substantial scatter at lower concentrations. Given the opera- 
tional characteristics of our specific particle model, our sensitivity study 
indicates the lowest concentration level that can be represented with a given 
number of particles (N, ) and a given spatial discretization of the Eulerian 
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Fig. 5. Sensitivity test for particle number: a - IV,, = 500; b - IV,, = 8000. 

flow field (dx, dy, dz) : 

QT 
“=Np A, Ay A, (15) 

where QT represents the integrated amount of mass. The limiting concentra- 
tion cl is also shown in Figs. 5a-b for the range of particle numbers investigated. 
Equation (15) can be used to provide an estimate of the minimum required 
number of particles for a given spill scenario, spatial discretization, and lower 
concentration level of interest to the user. 

Finally, we consider the spatial resolution needed. Figures 6 and 7, respec- 
tively, show a calculation for dispersion around a 2-D obstacle and for a heavy 
gas release. The surface layer conditions are identical in both cases ( u, = 0.257 
m/s, z0 = 0.02 m, L = co ) . Figure 6 represents the concentration profile for a 2- 
D wall with a height of 10 m on a distance of 30 m from a ground level passive 
source ( Q = 300 kg/s, t= 10 s) . Figure 7 shows the results for an instantaneous 
release of a heavy gas ( pe = 3 kg/m3, Q = 3000 kg) at ground level. We observe 
that grid-independent solutions can be obtained with affordable mesh sizes in 
both cases. The major advantage of the particle scheme therefore is the absence 
of numerical diffusion errors for an affordable spatial discretization. These less 
severe spatial resolution requirements (relative to conventional finite differ- 
ence schemes, see Fig. 1) also compensate for the additional computational 
cost incurred with the particle treatment. 

An additional advantage of the model accrues for application to the simu- 
lation of massive instantaneous heavy gas releases such as the Thorney Island 
Trials [ lo] . The calculation can be terminated when the average particle height 
becomes similar to the vertical step size, at which point there is inadequate 
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Fig. 6. Sensitivity of the dispersion calculation to spatial resolution, maximum centerline concen- 
tration at z = 3 m after an obstacle: s - source; o - obstacle; A - dz = 2m; b - AZ = 1.25 m. 
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Fig. 7. Sensitivity of the lateral profile for the maximum concentration at ground level to vertical 
spatial reeolution (x=270 m): A - dz= 1.0 m; b - dz=O.5 m. 
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Fig. 8. Comparison of prediction against experimental data for heavy gas dispersion (Thomey 
Island exp. no. 13 ) : l - center line data, o - near center line data, - - prediction; concentrations 
c in mol%. 

spatial resolution. This condition can be detected more easily with a particle 
model because the particle distribution adds a level of detail at a smaller scale 
than the computational cell size. This is important in such simulations because 
the initial source size is not the smallest length scale of the problem for an 
instantaneous heavy gas release, in contrast to the typical evaporative releases 
where the resolution of the source area is most critical. 

Up to now several aspects of the numerical procedure have been discussed 
separately without providing a global picture of its performance. It is impos- 
sible to separate completely the assessment of the numerical part from that of 
the physical model. A comparison between the simulation predictions and ex- 
perimental evidence is discussed together with the physical model in [ 13. The 
quality of the fit for a large scale test on heavy gas dispersion is illustrated in 
Fig. 8. 

Conclusion 

A Lagrangian particle technique for,simulating the equations of atmospheric 
dispersion of heavy gases is described. It has been developed to alleviate nu- 
merical advection errors obtained with finite difference methods. Numerical 



77 

verification tests have been presented to check the consistency of the solution 
procedure and to provide examples of resolution requirements. The primary 
advantage of the procedure is the ability to control numerical diffusion errors 
adequately with affordable discretization. Comparison with a large scale ex- 
periment on heavy gas dispersion shows a good agreement. 
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List of symbols 

c 
g 
k 

NZ 
NF 
NP 
P 
Pe 
Q 
Ri 
RG 

&J 

so 
S 
SC, 
T 
t 
wJ,w 

concentration ( kg/m3 ) 
acceleration of gravity (m”/s) 
reciprocal of Kalman-filter time constant ( s- ’ ) 
default value for k ( s - ’ ) 
Monin-Obukhov length (m) 
vertical computational cell number 
total number of cells in computational domain 
number of particles 
pressure ( N/m2 ) 
grid Peclet number 
source strength in eqn. 12 ( kg/m2) 
gradient Richardson number 
element of normally distributed random number sequence 
element of uniformly distributed random number sequence 
initial source size (m ) 
source term ( kg/m3 s ) in eqn. ( 6 ) 
turbulent Schmidt number ( -) 
temperature ( K ) 
time (8) 
velocity components along coordinate direction ( m/s) 
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friction velocity (m/s) 
increment defined by eqn. (10) ( ES-‘/~) 
coordinates in mean wind, lateral, and vertical directions, 
respectively 
mean particle height ( m ) 
roughness length (m ) 
density ( kg/m3 ) 
diffusivity ( m2/s ) 
standard deviation of particle fluctuations (m) 
time constant (8) 

Subscripts 
a “artificial” quantity as a consequence of the numerical scheme (in 

contrast to its physical counterpart) 
F filtered values 
g contaminant gas 
1 lowest value 
i or coordinate direction 
%YY,z 
max maximum 

E 
coefficients of turbulent momentum transfer 
values of turbulent mass transfer coefficients 

0 unfiltered value 
P particle 
r randomized 

& 
source 
thermal coefficients of turbulent transfer 
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